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You can seek any knowledge on demand. How much more productive
would humanity be if we can achieve this? –Amit Singhal,
Googles Search Lead

In the final lecture, we focus on discrete time quantum walks and their
connection to the reflection operations we’ve been considering so far in the
series. Discrete time quantum walks were an outpouring of the study of quantum
cellular automata [1, 2] and were first seriously recognized as useful for quantum
speedup in the paper by Ambainis [3]. Ref. [3] was the precursor to Szegedy’s
work [4, 5] that we’ve been discussing in the previous lectures. There are many
different applications of discrete time quantum walks as discussed in reviews [6,
7, 8] and to close the lecture we will discuss a recent paper [9] on simulating
Google’s PageRank algorithm using discrete time quantum walks.

The lecture begins with discrete quantum walks on a line followed by the
generalization to discrete quantum walks on general graphs, and, finally, the
quantized Google PageRank algorithm. The aim of the presentation is to impart
a broad understanding of discrete quantum walks as the products of reflection
operators; just as we’ve been studying.

Throughout the lecture, the Hilbert space will be partitioned into two spaces,
e.g. HA ⊗ HB and the following two notations are used interchangeably for
matrix elements (rank one projectors):

|a, b〉〈α, β| = |a〉〈α| ⊗ |b〉〈β|
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1 Discrete time quantum walks

1.1 Discrete quantum walks on a line

Classically, discrete and continuous time walks treat time differently, but the
vertex space, HV , of both types of walks are the same. Quantum mechanically,
this is not the case and the state space of the discrete time quantum walk must
be enlarged to support non-trivial unitary dynamics.

Meyer proved [1] that if a rule for discrete time quantum evolution is the
same for each site and depends on some local neighborhood of that site then
there is no non-trivial unitary matrix. Specifically, if a unitary matrix is banded
with a width of r entries and commutes with one-step translation operator in (1)
then it is must also be a translation operator to some power times a phase. Thus,
the two following operators are special as they are the only unitary operators
(up to a phase) on an infinite line satisfying locality and translation invariance.

S+ =

∞∑
n=−∞

|n+ 1〉〈n| (1)

S− =

∞∑
n=−∞

|n− 1〉〈n| = (S+)† (2)

This limitation is circumvented by using an extra degree of freedom frequently
called a “coin” when this extension is two-dimensional. As a result, the auxiliary
space is denoted HC .

The unitary evolution on the enlarged space, HV ⊗ HC , is done by first,
“flipping” the coin then shifting forward or backward based on the state of
the coin 1. Alternatively, we could think of “rotating” the coin. By flipping a
2D coin, we mean that a reflection operation (about some arbitrary) state has
been performed, and by rotating a coin, we mean a rotation operation has been
performed on the coin. Naturally, we focus on the reflections.

The reflection operator about an arbitrary state, |f±〉 = cosω|+〉+eiϕ sinω|−〉,
gives

2|f±〉〈f±| − 1 = 2

[
cos2 ω|−〉〈−| 1

2e
iϕ sin 2ω|−〉〈+|

1
2e
−iϕ sin 2ω|+〉〈−| sin2 ω|+〉〈+|

]
− 1 (3)

=

[
(2 cos2 ω − 1)|−〉〈−| eiϕ sin 2ω|−〉〈+|
e−iϕ sin 2ω|+〉〈−| (2 sin2 ω − 1)|+〉〈+|

]
(4)

=

[
cos 2ω|−〉〈−| eiϕ sin 2ω|−〉〈+|

e−iϕ sin 2ω|+〉〈−| − cos 2ω|+〉〈+|

]
(5)

1This is similar to spin-dependent shifts of neutral atoms (e.g. rubidium or cesium) in
optical lattices where the spin of the atom can be rotated using microwaves and then the
potential shifts depending on the orientation of the spin. If the spin is in a coherent superpo-
sition, then the shift of the atom is also coherently done, see e.g. [10]. This analogy holds for
the one dimensional walk but it will not hold in the generalizations considered here.
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Using ϕ = 0 and ω = θ/2 in the definition of |f±〉, 2 we have

F (n)(θ) = 2|f±〉〈f±| − 1 =

[
cos θ|−〉〈−| sin θ|−〉〈+|
sin θ|+〉〈−| − cos θ|+〉〈+|

]
. (6)

This is our reflection operator at each individual site. The full reflection operator
is

FC(θ) =
∑
n

(|n〉〈n| ⊗ F (n)(θ)) (7)

= 2
∑
n

|n, f±〉〈n, f±| −
∑
n

|n〉〈n| ⊗ 1± (8)

= 2
∑
n

|n, f±〉〈n, f±| − 1⊗ 1± (9)

Note that π/4 gives the Hadamard transformation and π/2 flips the coin from
± to ∓.

A rotation in SU(2) is given by:

T (θ) =

[
cos θ sin θ
− sin θ cos θ

]
= exp[iθσy] (10)

The rotation is related to a reflections using the Pauli σz matrix as F (n)(θ) =
σzT (θ) or through F (n)(θ)F (n)(2θ) = T (θ).

The coin-dependent shift, S, is given by

S =

∞∑
n=−∞

|n± 1〉〈n| ⊗ |±〉〈±| =
[
S− 0
0 S+

]
(11)

In the last equation, the (1,1) and (2,2) position of the matrix correspond to
|−〉〈−| and |+〉〈+|, respectively.

Putting it all together, the following unitary matrix serves as the basic dis-
crete time quantum walk operator for one dimensional evolution

U = SFC(θ). (12)

Direct matrix multiplication gives the following standard forms for U :

U =
∑
±
S± ⊗ (sin θ|±〉〈∓| ∓ cos θ|±〉〈±|) (13)

=

∞∑
n=−∞

[
cos θ|n− 1,−〉〈n,−| sin θ|n− 1,−〉〈n,+|
sin θ|n+ 1,+〉〈n,−| − cos θ|n+ 1,+〉〈n,+|

]
(14)

Before introducing arbitrary graphs, we will extend the notation used so far.

2We only consider real reflections following Romanelli. See [11] and reference therein for
arguments specifying why this is justified.
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1.2 Notational reformulation

The notation used so far is how coined quantum walks are usually described.
Now we go beyond this by reformulating the notation so that the connection to
Szegedy’s work becomes more obvious.

If instead of considering the coin space an actual two-dimensional space, we
were to consider it as a two-dimensional subspace of the full vertex space then
one would probably make the follow identification,

|n〉|±〉 = |n〉|n± 1〉 (15)

Notice that nothing is lost or gained since the value of n is encoded in the first
space. In this case, HC ⊆ HV defined relative to each site.

Rewriting (6) using this basis,

F (n)(θ) =

[
cos θ|n− 1〉〈n− 1| sin θ|n− 1〉〈n+ 1|
sin θ|n+ 1〉〈n− 1| − cos θ|n+ 1〉〈n+ 1|

]
, (16)

Unfortunately, the coin-flip operation,

FC = 2
∑
|n, fn+1,n−1〉〈n, fn+1,n−1| −

∑
|n, n± 1〉〈n, n± 1| (17)

is no longer a reflection on the full vertex space since |n〉〈n| would show up
when using 1⊗1 instead of 1⊗1± as in (9). However, we can define a modified
identity operator,

1′ =
∑
|n〉〈n| ⊗ |n± 1〉〈n± 1| (18)

such that FC is again a reflection.
Returning to the shift operator, we rewrite this as

S =

∞∑
n=−∞

|n± 1, n± 2〉〈n, n± 1| =
∑
n

|n± 1〉〈n| ⊗ |n± 2〉〈n± 1| (19)

In this space, S is no longer unitary as SS† 6= 1⊗ 1, but is instead equal to the
modified identity operator. Note that the relative definition of |±〉 is necessary
to give the correct entanglement/correlations between the spaces. This avoids
the situation |n ± 1〉|n ± 1〉 containing an invalid coin state. This forbids the
coin from landing on its “edge” i.e. the state in-between |n+ 1〉 and |n− 1〉.

While the notation may seem more cumbersome, it will be useful when trying
to generalize to arbitrary graphs and to Szegedy’s scheme. In the next section,
we will modify the discrete time evolution operator by examining the limitations
of the current approach.

1.3 The discrete quantum walk as a product of reflections

The discrete walk on the line has a few special properties that we’ve been
exploiting. First, each vertex of the graph has two neighbors. In a general
graph this is not the case and we can circumvent this by considering a larger
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auxiliary space and reflections on this larger space. As the notation from the
previous section should have made clear, the coin space is merely a subspace of
the full vertex space spanned by the vertices that are neighbors.

Second, since the walker can shift in more than two directions, the shift op-
eration as defined in (19) is no longer sufficient. Generalizing this to the Szegedy
scheme is easiest if we restrict the action of S to the subspace of HV spanned by
the beginning and ending vertices in both the walker and the auxiliary space.
This can be accomplished by changing S such that n± 2 does appear using an
additional operator, Fx = FC(π/2).

σ = FxS =
∑
|n± 1, n〉〈n, n± 1| =

∑
|n± 1〉〈n| ⊗ |n〉〈n± 1| (20)

The shift is still only unitary with respect to the modified identity operator,
S†F †xFxS = S†S = 1′.

Consider two steps of the quantum walks with the new shift operator, σ,

(σFCσ)FC =

[(∑
m

2σ|m, fm+1,m−1〉〈m, fm+1,m−1|σ

)
− σ1′σ

]
FC (21)

=

[(∑
m

2|fm+1,m−1,m〉〈fm+1,m−1,m|

)
− 1′

]
FC (22)

=
[
2
∑
|fm+1,m−1,m〉〈fm+1,m−1,m| − 1′

]
FC (23)

The first term is almost the same as (16) except acting on the left space. Let
us relabel FC(θ) = FR(θ) and define FL(θ) = σFR(θ)σ. Now, the two-step
quantum walk operator is FL(θ)FR(θ) which is a product of reflections!

1.4 Generalization to arbitrary graphs

To realize discrete quantum walks on arbitrary graphs, the reflection operators,
FL and FR, must be generalized. Recalling our work from the previous lectures,
the states corresponding to rows of an arbitrary Markov chain P (i.e.

∑
m Pnm =

1) are

|φn〉 =
∑
m

√
Pnm|n〉|m〉. (24)

The reflection is then defined

FR = 2
∑
n

|φn〉〈φn| − 1 (25)

=
∑

nmm′

|n〉〈n| ⊗
(

2
√
PnmPnm′ − δmm′

)
|m〉〈m′| (26)

Note that σσFLσ = σ(σFLσ) = σFR. To recover the results of the previ-
ous sections, we can use a translational invariant Markov chain, M , defined as
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follows

Mn,n+1 = cos2 ω (27)

Mn,n−1 = sin2 ω (28)

Mn,n±1 = Mn′,n′±1 (29)

One can show that FR corresponding to Markov chain M the acts on states
|k, k±1〉 as (9). Note in (26) we do not use the modified identity operator. The
illegal states |k, k〉 do not evolve under the action of (26) instead only obtaining
an alternating phase factor of −1.

The revised shift operator, σ, in (20) swaps the left and right spaces in the
walk on a line. Accordingly, we generalize this operator as a swap of the two
spaces.

σ =
∑
xy

|x, y〉〈y, x|. (30)

Finally, we arrive at the generalized discrete time evolution operator for arbi-
trary graphs

σFR = σ

(
2
∑
n

|φn〉〈φn| − 1

)
(31)

As before, if we consider two-step evolution, then σFRσFR = FLFR is again
a product of reflections. Here we have defined FL as

FL = σFRσ =

(
2
∑
n

|φn〉〈φn| − 1

)
(32)

=
∑

nmm′

(
2
√
PnmPnm′ − δmm′

)
|m〉〈m′| ⊗ |n〉〈n| (33)

In terms of the quantization scheme for pairs of Markov chains Szegedy put
forth, we have quantized the Markov chain pair (P, P ). To provide further
intuition about the Szegedy scheme for discrete time quantum walks, in the
next section we discuss the classical analog: a walk on the edges.

2 Intuition from random walks on edges

References [12, 13] nicely describe the idea of a random walk on the edges rather
than the vertices. The key idea being that if we use directed edges as the basis
for the state space and choose our evolution operators correctly, then we can
achieve evolution that matches the vertex based walk. The discussion from this
section is summarized in figure 1.

For a walk along the edges, we first specify the state of a walker at a location,
l, with a target, t, as |@l, t〉. The @ is a marker for the origin included for
conceptual clarity. Now, consider a tentative transition function, F , based on
the transition matrix, P , that has the following action on an edge state:

F |@l, t〉 =
∑
i

Pli|@l, i〉, (34)
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Figure 1: A classical walk on a line using flip and swap operations. The action of
the flip operation described in (34) followed by the action of the swap operation
in (30). This is the same as a classical walk on the orange check board vertices

for all vertices t. Notice F does not change the origin and only assigns probabil-
ities to the potential moves. This is similar to the flip operator discussed in the
quantum case however classically this is not a reflection. To generate motion in
the @ space, the proposed moves are acted upon using the same swap operator
encountered earlier in the quantum prescription, (30).

If we let 〈s0|i〉 =
∑

j〈i, j|e0〉 then for initial vertex state 〈s0| and initial
edge state |e0〉, it can be shown that the evolution of |en〉 = (σF )n|e0〉 and
〈sn| = 〈s0|Pn are the same after ignoring the second vertex of |en〉. This is left
as an exercise for the reader.

To fully compare with the quantum situation, let us remark that the two-step
classical walk has a very similar form to the quantum reflective walk. Just as
before, we can define alternative transition function F ′ related to F by σFσ =
F ′. Then taking two steps classically, (σF )2 = σFσF = F ′F just as in the
quantum case. The relationship between the classical assignment operators F
and F ′ is the same as the relationship between the quantum flip operators, FL

and FR c.f. (32). The key difference is that the quantum operators are unitary
reflection operators while the classical assignment operators are not.

Now we turn to an example recently appearing the in literature: Google in
a quantum network by Paparo and Martin-Delgado [9]. For those who have fol-
lowed the lecture series, the paper should be straightforward to understand and
we present here as an example of quantum walks via Markov chain quantization.
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3 Google in a quantum network

3.1 The Google matrix

Google’s PageRank algorithm is a $25 billion dollar eigenvector problem accord-
ing to the introductory article [14]. The basic idea of the PageRank algorithm
is to mimic a random web surfer (walker) that peruses web pages (vertices) by
clicking links at random (edges). The hyperlink matrix is a directed matrix
representing the internet. The corresponding Markov chain, E, requires that
the weight of each outgoing edge be divided by the number of links on the page
so that

∑
j Eij = 1. A random walker using transition matrix E is not ergodic

because there are some web sites with no outgoing links and some without in-
coming links. To ensure that the walker doesn’t get trapped nor misses any
sites, there is a finite probability, α, that the walker will randomly jump to any
of the indexed websites. The random jump matrix, C, is such that Cij = 1/N
for all i and j. Writing this down as a Markov matrix, G,

G = (1− α)E + αC (35)

The PageRank of a website is determined by the stationary distribution,
w, of Markov chain G where wG = w. The entry wi corresponding to site i
is the importance of site i. The convergence to the stationary distribution, as
mentioned in the previous lecture, is determined by the first eigenvalue less than
unity, λ2. For G, eigenvalue depends on α and 0.15 is known to be a reasonable
value.

3.2 Quantization

At the end of the last lecture, we showed that the gap ∆ = 1−λ2 is quadratically
larger when quantizing reversible Markov chain P and its reversed chain P (∗).
Thus, quantizing the PageRank algorithm would all the computation of the sta-
tionary distribution quadratically faster. However, since the quantum evolution
is unitary instead of Markovian, the probability distribution corresponding to a
quantum walk never converges to a fixed distribution [6, 8]. However, the time
averaged probability does converges.

p̄(T ) =
1

T

∑
t

p(t) (36)

Converting from the quantum wave function, |ψ〉 =
∑

ij cij |i〉|j〉 to a prob-
ability distribution p requires, first, tracing over the second tensor space,

ρ(1) = Tr2 (|ψ〉〈ψ|) =
∑
j

cijc
∗
i′j |i〉〈i′|. (37)

Second, each diagonal element of ρ(1) are probabilities. That is,

pi = ρ
(1)
ii =

∑
j

|cij |2. (38)
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Figure 2: The graphs used to compare the original PageRank algorithm and the
quantum PageRank algorithm in [9]. Used with permission.
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(a) PageRank for Tree
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(b) PageRank for general network

Figure 3: The results of the quantum PageRank algorithm [9] preserve the
dominate features and trends of the original PageRank. The error bars on the
quantum PageRank points correspond to the variance of the estimate.

The paper by Paparo uses the same quantization scheme discussed in Section 1.4.
Additionally, the eigenvalues for the walk are computed following the prescrip-
tion given in the previous lecture.

Finally, the authors apply the quantized scheme to two small graphs depicted
in fig. 2. They compared the time-averaged quantum PageRank and the classical
PageRank to find that they differ somewhat as depicted in 3. All figures are
used with permission.
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